Vrydag 22 Maart 2013

Tugas 1 (Ringkasan Karbohidrat)

DEFINISI KARBOHIDRAT 
      Karbohidrat adalah polihidroksi aldehida atau keton dengan rumus empirik (CH2O)n, dapat diubah menjadi aldehida dan keton dengan cara hidrolisis, disusun oleh dua sampai delapan monosakarida yang dirujuk sebagai oligosakarida. Karbohidrat tersebar luas baik dalam jaringan hewan maupun jaringan tumbuh-tumbuhan. Dalam tumbuh-tumbuhan, karbohidrat dihasilkan oleh fotosintesis dan mencakup selulosa serta pati. Pada jaringan hewan, karbohidrat berbentuk glukosa dan glikogen. Fungsi karbohidrat yaitu, untuk sumber energi, pemanis pada makanan, penghemat protein, pengatur metabolisme lemak, penawar racun, baik untuk yang terkena konstipasi (sembelit), dan masih banyak lagi manfaat-manfaat yang lainnya. 
     Pada umumnya karbohidrat merupakan zat padat berwarna putih yang sukar larut dalam pelarut organik tetapi larut dalam air (kecuali beberapa polisakarida).

Klasifikasi Karbohidrat:
A. Monosakarida
Monosakarida adalah karbohidrat yang tidak dapat dihidrolisis menjadi bentuk yang lebih sederhana. Monosakarida meliputi glukosa, galaktosa, fruktosa, manosa, dan lain-lain.
1. Glukosa
Glukosa merupakan suatu aldoheksosa, disebut juga dekstrosa karena memutar bidang polarisasi ke kanan. Glukosa merupakan komponen utama gula darah, menyusun 0,065- 0,11% darah kita.
Glukosa dapat terbentuk dari hidrolisis pati, glikogen, dan maltosa. Glukosa sangat penting bagi kita karena sel tubuh kita menggunakannya langsung untuk menghasilkan energi. Glukosa dapat dioksidasi oleh zat pengoksidasi lembut seperti pereaksi Tollens sehingga sering disebut sebagai gula pereduksi.
D-glukosa
β-D-glukosa
α-D-glukosa
2. Galaktosa
Galaktosa merupakan suatu aldoheksosa. Monosakarida ini jarang terdapat bebas di alam. Umumnya berikatan dengan glukosa dalam bentuk laktosa, yaitu gula yang terdapat dalam susu. Galaktosa mempunyai rasa kurang manis jika dibandingkan dengan glukosa dan kurang larut dalam air. Seperti halnya glukosa, galaktosa juga merupakan gula pereduksi.
D-galaktosa
β-D-galaktosa
α-D-galaktosa
3. Fruktosa
Fruktosa adalah suatu heksulosa, disebut juga levulosa karena memutar bidang polarisasi ke kiri. Merupakan satu-satunya heksulosa yang terdapat di alam.  Fruktosa merupakan gula termanis, terdapat dalam madu dan buah-buahan bersama glukosa.
Fruktosa dapat terbentuk dari hidrolisis suatu disakarida yang disebut sukrosa. Sama seperti glukosa, fruktosa adalah suatu gula pereduksi.
(a)
(b)
Struktur fruktosa: (a) struktur terbuka (b) struktur siklis

 
B. Disakarida
Disakarida adalah karbohidrat yang tersusun dari 2 molekul monosakarida, yang dihubungkan oleh ikatan glikosida. Ikatan glikosida terbentuk antara atom C 1 suatu monosakarida dengan atom O dari OH monosakarida lain. Hidrolisis 1 mol disakarida akan menghasilkan 2 mol monosakarida. Berikut ini beberapa disakarida yang banyak terdapat di alam. 
1. Maltosa Maltosa adalah suatu disakarida dan merupakan hasil dari hidrolisis parsial tepung (amilum). Maltosa tersusun dari molekul α-D-glukosa dan β-D-glukosa.
Struktur maltosa
Dari struktur maltosa, terlihat bahwa gugus -O- sebagai penghubung antarunit yaitu menghubungkan C 1 dari α-D-glukosa dengan C 4 dari β-D-glukosa. Konfigurasi ikatan glikosida pada maltosa selalu α karena maltosa terhidrolisis oleh α-glukosidase. Satu molekul maltosa terhidrolisis menjadi dua molekul glukosa. 
2.Sukrosa Sukrosa terdapat  dalam gula tebu dan gula bit. Dalam kehidupan sehari-hari sukrosa dikenal dengan gula pasir. Sukrosa tersusun oleh molekul glukosa dan fruktosa yang dihubungkan oleh ikatan 1,2 –α.
Struktur sukrosa
Sukrosa terhidrolisis oleh enzim invertase menghasilkan α-D-glukosa dan β-D-fruktosa. Campuran gula ini disebut gula inversi, lebih manis daripada sukrosa.
Jika kita perhatikan strukturnya, karbon anomerik (karbon karbonil dalam monosakarida) dari glukosa maupun fruktosa di dalam air tidak digunakan untuk berikatan sehingga keduanya tidak memiliki gugus hemiasetal.
Akibatnya, sukrosa dalam air tidak berada dalam kesetimbangan dengan bentuk aldehid atau keton sehingga sukrosa tidak dapat dioksidasi. Sukrosa bukan merupakan gula pereduksi.
3.Laktosa Laktosa adalah komponen utama yang terdapat pada air susu ibu dan susu sapi. Laktosa tersusun dari molekul  β-D-galaktosa dan α-D-glukosa yang dihubungkan oleh ikatan 1,4'-β.
Struktur laktosa
Hidrolisis dari laktosa dengan bantuan enzim galaktase yang dihasilkan dari pencernaan, akan memberikan jumlah ekivalen yang sama dari α-D-glukosa dan β-D-galaktosa. Apabila enzim ini kurang atau terganggu, bayi tidak dapat mencernakan susu. Keadaan ini dikenal dengan penyakit galaktosemia yang biasa menyerang bayi. 
C. Polisakarida
Polisakarida merupakan polimer monosakarida, mengandung banyak satuan monosakarida yang dihubungkan oleh ikatan glikosida. Hidrolisis lengkap dari polisakarida akan menghasilkan monosakarida. Glikogen dan amilum merupakan polimer glukosa. Berikut beberapa polisakarida terpenting.
1. Selulosa Selulosa merupakan polisakarida yang banyak dijumpai dalam dinding sel pelindung seperti batang, dahan, daun dari tumbuh-tumbuhan. Selulosa merupakan polimer yang berantai panjang dan tidak bercabang. Suatu molekul tunggal selulosa merupakan polimer rantai lurus dari 1,4’-β-D-glukosa. Hidrolisis selulosa dalam HCl 4% dalam air menghasilkan D-glukosa.
Struktur selulosa
     Dalam sistem pencernaan manusia terdapat enzim yang dapat memecahkan ikatan α-glikosida, tetapi tidak terdapat enzim untuk memecahkan ikatan β-glikosida yang terdapat dalam selulosa sehingga manusia tidak dapat mencerna selulosa. Dalam sistem pencernaan hewan herbivora terdapat beberapa bakteri yang memiliki enzim β-glikosida sehingga hewan jenis ini dapat menghidrolisis selulosa. Contoh hewan yang memiliki bakteri tersebut adalah rayap, sehingga dapat menjadikan kayu sebagai makanan utamanya. Selulosa sering digunakan dalam pembuatan plastik. Selulosa nitrat digunakan sebagai bahan peledak, campurannya dengan kamper menghasilkan lapisan film (seluloid).
2. Pati / Amilum Pati terbentuk lebih dari 500 molekul monosakarida. Merupakan polimer dari glukosa. Pati terdapat dalam umbi-umbian sebagai cadangan makanan pada tumbuhan. Jika dilarutkan dalam air panas, pati dapat dipisahkan menjadi dua fraksi utama, yaitu amilosa dan amilopektin. Perbedaan terletak pada bentuk rantai dan jumlah monomernya.
Amilosa adalah polimer linier dari α-D-glukosa yang dihubungkan dengan ikatan 1,4-α. Dalam satu molekul amilosa terdapat 250 satuan glukosa atau lebih. Amilosa membentuk senyawa kompleks berwarna biru dengan iodium. Warna ini merupakan uji untuk mengidentifikasi adanya pati.
Struktur amilosa
Molekul amilopektin lebih besar dari amilosa. Strukturnya bercabang. Rantai utama mengandung α-D-glukosa yang dihubungkan oleh ikatan 1,4'-α. Tiap molekul glukosa pada titik percabangan dihubungkan oleh ikatan 1,6'-α.
Struktur amilopektin
Hidrolisis lengkap pati akan menghasilkan D-glukosa. Hidrolisis dengan enzim tertentu akan menghasilkan dextrin dan maltosa.

  
Ada beberapa metode uji kualitatif karbohidrat : 

1. Uji Molisch
     Adalah uji untuk membuktikan adanya karbohidrat. Uji ini efektif untuk berbagai senyawa yang dapat di dehidrasi menjadi furfural atau substitusi furfural oleh asam sulfat pekat. Senyawa furfural akan membentuk kompleks dengan α-naftol yang dikandung pereaksi Molisch dengan memberikan warna ungu pada larutan.

2. Uji Benedict
    Adalah uji untuk membuktikan adanya gula pereduksi. Gula pereduksi adalah gula yang mengalami reaksi hidrolisis dan bisa diurai menjadi sedikitnya dua buah monosakarida. Karateristiknya tidak bisa larut atau bereaksi secara langsung dengan Benedict, contohnya semua golongan monosakarida, sedangkan gula non pereduksi struktur gulanya berbentuk siklik yang berarti bahwa hemiasetal dan hemiketalnya tidak berada dalam kesetimbangannya, contohnya fruktosa dan sukrosa. Dengan prinsip berdasarkan reduksi Cu2+ menjadi Cu+ yang mengendap sebagai Cu2O berwarna merah bata. Untuk menghindari pengendapan CuCO3 pada larutan natrium karbonat (reagen Benedict), maka ditambahkan asam sitrat. Larutan tembaga alkalis dapat direduksi oleh karbohidrat yang mempunyai gugus aldehid atau monoketon bebas, sehingga sukrosa yang tidak mengandung aldehid atau keton bebas tidak dapat mereduksi larutan Benedict.

3. Hidrolisis Pati
      Untuk mengidentifikasi hasil hidrolisis amilum digunakan larutan amilum 1%, larutan iodium, pereaksi Benedict, larutan HCl 2 N, Larutan NaOH 2%. Amilum ditambahkan dengan HCl lalu dipanaskan. Dilakukan uji iodium setiap 3 menit hingga warnanya berubah jadi kuning pucat. Kemudian larutan dihidrolisis lagi selama 5 menit lalu didinginkan dan dinetralkan dengan NaOH 2%,. Lalu diuji dengan pereaksi Benedict.

4. Uji Barfoed

   Adalah uji untuk membedakan monosakarida dan disakarida dengan mengontrol kondisi pH serta waktu pemanasan. Prinsipnya berdasarkan reduksi Cu2+ menjadi Cu+. Reagen Barfoed mengandung senyawa tembaga asetat.

5. Uji Seliwanoff

   Prinsipnya berdasarkan konversi fruktosa menjadi asam levulinat dan hidroksimetil furfural oleh asam hidroklorida panas dan terjadi kondensasi hidroksimetilfurfural dengan resorsinol yang menghasilkan senyawa berwarna merah, reaksi ini spesifik untuk ketosa. Sukrosa yang mudah dihidrolisis menjadi glukosa dan fruktosa akan memberikan reaksi positif dengan uji seliwanoff yang akan memberikan warna jingga pada larutan. 5. Uji Hidrolisis Pati
Pati dan iodium membentuk ikatan kompleks berwarna biru. Pati dalam suasana asam bila dipanaskan dapat terhidrolisis menjadi senyawa yang lebih sederhana, hasilnya diuji dengan iodium yang akan memberikan warna biru sampai tidak berwarna dan hasil akhir ditegaskan dengan uji Benedict. 

6. Uji Iodium
    Karbohidrat golongan polisakarida akan memberikan reaksi dengan larutan   iodine  dan  memberikan  warna  spesifik  bergantung  pada  jenis karbohidratnya.  Amilose  dengan  iodine akan  berwarna  biru,  amilopektin dengan iodine akan berwarna merah violet, glikogen maupun dextrin dengan iodine akan berwarna coklat.
Uji ini dilakukan untuk menentukan polisakarida. Larutan uji dicampurkan dengan larutan iodium. Hasil positif ditandai dengan amilum dengan iodium berwarna biru, dan dekstrin dengan iodium berwarna merah anggur.

 7. Uji Osazon
     Semua karbohidrat yang mempunyai gugus aladehida atau keton bebas membentuk hidrazon atau osazon bila dipanaskan bersama fenilhidrazin berlebih. Osazon yang terjadi mempunyai bentuk kristal dan titik lebur yang spesifik. Osazon dari disakarida larut dalam air mendidih dan terbentuk kembali bila didinginkan. Namun, sukros tidak membentuk osazon karena gugus aldehida atau keton yang terikat pada monomernya sudah tidak bebas.  Sebaliknya, osazon monosakarida tidak larut dalam air mendidih.
8. Uji Asam Musat
       Dilakukan untuk membedakan antara glukosa dan galaktosa. Larutan uji dicampurkan dengan HNO3 pekat kemudian dipanaskan. Karbohidrat dengan asam nitrat pekat akan menghasilkan asam yang dapat larut. Namun, laktosa dan galaktosa menghasilkan asam musat yang dapat larut.

9. Hidrolisis Sukrosa
       Untuk mengidentifikasi hasil hidrolisis sukrosa digunakan larutan sukrosa 1%, pereaksi Benedict, pereaksi Seliwanoff, pereaksi Barfoed, larutan HCl pekat, larutan NaOH 2% sebagai bahannya. larutan sukrosa ditambahkan dengan HCl pekat lalu dipanaskan selama 45 menit. Setelah didinginkan dinetralkan dengan NaOH 2%. Lalu diuji dengan pereaksi Benedict, Seliwanoff, dan Barfoed.

Tugas 2 (Uji kualitatif Gula Pereduksi dan Non Pereduksi)

Uji Kualitaitf Gula pereduksi dan Non pereduksi


GULA PEREDUKSI
http://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Glucose_chain_structure.svg/220px-Glucose_chain_structure.svg.png
http://bits.wikimedia.org/static-1.21wmf9/skins/common/images/magnify-clip.png
Struktur glukosa
http://upload.wikimedia.org/wikipedia/commons/thumb/4/4e/L-Fructose_chain_horiz.svg/220px-L-Fructose_chain_horiz.svg.png
http://bits.wikimedia.org/static-1.21wmf9/skins/common/images/magnify-clip.png
Struktur fruktosa
 Gula invert adalah Sebuah campuran bagian yang sama dari glukosa dan fruktosa yang dihasilkan dari hidrolisis sukrosa.  Hal ini ditemukan secara alami dalam buah-buahan dan madu dan diproduksi secara buatan untuk digunakan dalam industri makanan. Dibandingkan dengan prekursor, sukrosa, gula invert lebih  manis dan produk-produknya cenderung tetap lembab dan kurang rentan terhadap kristalisasi.  Oleh karena itu dipakai oleh tukang roti , yang mengacu pada sirup sebagai atau sirup invert trimoline.
Campuran glukosa dan fruktosa yang diproduksi oleh hidrolisis sukrosa, 1,3 kali lebih manis daripada sukrosa.  Disebut demikian karena aktivitas optik terbalik dalam proses.  Hal ini penting dalam pembuatan kembang gula, dan terutama permen direbus , sejak kehadiran 10-15% gula invert maka dapat mencegah kristalisasi sukrosa.
Dalam istilah teknis, sukrosa adalah disakarida , yang berarti bahwa itu adalah molekul yang berasal dari dua gula sederhana monosakarida. Dalam kasus sukrosa, monosakarida blok bangunan ini adalah fruktosa dan glukosa.  Pemecahan sukrosa adalah reaksi hidrolisis . hidrolisis dapat diinduksi hanya dengan pemanasan larutan sukrosa, tetapi lebih umum, katalis ditambahkan untuk mempercepat konversi. Secara biologis katalis yang ditambahkan disebut sucrases (pada hewan) dan invertases (pada tumbuhan). Sucrases dan invertases adalah jenis hidrolase glikosida enzim. Acid , seperti terjadi di jus lemon atau cream of tartar , juga mempercepat konversi sukrosa untuk membalikkan.
Gula invert dibuat dengan menggabungkan suatu sirup gula dengan sedikit asam (seperti cream of tartar atau jus lemon) dan pemanasan.  Ini membalik, atau rusak, maka sukrosa menjadi dua komponen, glukosa dan fruktosa , sehingga mengurangi ukuran kristal gula.  Karena struktur kristal halus, gula inversi menghasilkan produk yang lebih halus dan digunakan dalam membuat permen seperti fondant , dan beberapa sirup.  Proses pembuatan selai dan jeli otomatis menghasilkan invert gula dengan menggabungkan asam alami dalam buah dengan gula pasir dan pemanasan campuran. Invert sugar can usually be found in jars in cake-decorating supply shops. Gula invert biasanya dapat ditemukan dalam stoples di toko-toko pasokan kue-dekorasi.
Dalam istilah teknis, sukrosa adalah disakarida, yang berarti bahwa itu adalah molekul yang berasal dari dua gula sederhana monosakarida. Dalam kasus sukrosa, monosakarida blok bangunan ini adalah fruktosa dan glukosa.  The hidrolisis dapat diinduksi hanya dengan pemanasan larutan sukrosa, tetapi lebih umum, katalis ditambahkan untuk mempercepat konversi. Secara biologis katalis yang ditambahkan disebut sucrases (pada hewan) dan invertases (pada tumbuhan).  Sucrases dan invertases adalah jenis hidrolase glikosida enzim. Acid , seperti terjadi di jus lemon atau cream of tartar , juga mempercepat konversi sukrosa untuk membalikkan.
 GULA NON PEREDUKSI (GULA INVERT)
Gula invert adalah Sebuah campuran bagian yang sama dari glukosa dan fruktosa yang dihasilkan dari hidrolisis sukrosa.  Hal ini ditemukan secara alami dalam buah-buahan dan madu dan diproduksi secara buatan untuk digunakan dalam industri makanan. Dibandingkan dengan prekursor, sukrosa, gula invert lebih  manis dan produk-produknya cenderung tetap lembab dan kurang rentan terhadap kristalisasi.  Oleh karena itu dipakai oleh tukang roti , yang mengacu pada sirup sebagai atau sirup invert trimoline.
Campuran glukosa dan fruktosa yang diproduksi oleh hidrolisis sukrosa, 1,3 kali lebih manis daripada sukrosa.  Disebut demikian karena aktivitas optik terbalik dalam proses.  Hal ini penting dalam pembuatan kembang gula, dan terutama permen direbus , sejak kehadiran 10-15% gula invert maka dapat mencegah kristalisasi sukrosa.
Dalam istilah teknis, sukrosa adalah disakarida , yang berarti bahwa itu adalah molekul yang berasal dari dua gula sederhana monosakarida. Dalam kasus sukrosa, monosakarida blok bangunan ini adalah fruktosa dan glukosa.  Pemecahan sukrosa adalah reaksi hidrolisis . hidrolisis dapat diinduksi hanya dengan pemanasan larutan sukrosa, tetapi lebih umum, katalis ditambahkan untuk mempercepat konversi. Secara biologis katalis yang ditambahkan disebut sucrases (pada hewan) dan invertases (pada tumbuhan). Sucrases dan invertases adalah jenis hidrolase glikosida enzim. Acid , seperti terjadi di jus lemon atau cream of tartar , juga mempercepat konversi sukrosa untuk membalikkan.
Gula invert dibuat dengan menggabungkan suatu sirup gula dengan sedikit asam (seperti cream of tartar atau jus lemon) dan pemanasan.  Ini membalik, atau rusak, maka sukrosa menjadi dua komponen, glukosa dan fruktosa , sehingga mengurangi ukuran kristal gula.  Karena struktur kristal halus, gula inversi menghasilkan produk yang lebih halus dan digunakan dalam membuat permen seperti fondant , dan beberapa sirup.  Proses pembuatan selai dan jeli otomatis menghasilkan invert gula dengan menggabungkan asam alami dalam buah dengan gula pasir dan pemanasan campuran. Invert sugar can usually be found in jars in cake-decorating supply shops. Gula invert biasanya dapat ditemukan dalam stoples di toko-toko pasokan kue-dekorasi.
Dalam istilah teknis, sukrosa adalah disakarida, yang berarti bahwa itu adalah molekul yang berasal dari dua gula sederhana monosakarida. Dalam kasus sukrosa, monosakarida blok bangunan ini adalah fruktosa dan glukosa.  The hidrolisis dapat diinduksi hanya dengan pemanasan larutan sukrosa, tetapi lebih umum, katalis ditambahkan untuk mempercepat konversi. Secara biologis katalis yang ditambahkan disebut sucrases (pada hewan) dan invertases (pada tumbuhan).  Sucrases dan invertases adalah jenis hidrolase glikosida enzim. Acid , seperti terjadi di jus lemon atau cream of tartar , juga mempercepat konversi sukrosa untuk membalikkan.
Penetapan Kadar Gula meliputi:
a.      Kadar Gula sebelum Inversi atau gula Glukosa yang bersifat pereduksi
b.      Kadar Gula setelah Inversi atau gula Invert (gula non pereduksi)
Prosedur Kerja
Persiapan sampel
Timbang 10-15 gram sampel sirup, masukkan ke labu ukur 100 ml. Impitkan dengan air suling hingga tanda garis. Saring apabila terdapat bagian buah. Pipet 50 ml larutan ini, masukkan kedalam labu ukur 250 ml. Tambahkan 10 ml Pb-asetat setengah basa (berlebih).Kocok. Tambahkan larutan Na2HPO4 10% tetes demi tetes hingga berlebihan Pb-asetat setengah basa dianggap cukup. Tambahkan 15 ml (NH4)2HPO4 untuk pengendapan sempurna, lalu impitkan dengan air suling hingga tanda garis. Kocok. Simpan selama 30 menit dalam lemari pendingin (hingga endapan turun semua kedasar labu ukur). Saring. Hasil saringan digunakan sebagai larutan induk untuk menentukan Kadar gula sebelum inverse dan setelah inverse.
a.      Kadar gula sebelum inverse (Gula glukosa = Gula pereduksi)
Pipet 10 ml larutan induk ke dalam Erlenmeyer asa berbatu didih. Tambahkan 25 ml larutan luff (pipet volume) dan 15 ml air suling (jumlah larutan 50 ml). Tutup dengan pendingin tegak dan panaskan dengan api kecil. Tepat pada pemanasan 3 menit, larutan sudah harus mendidih. Biarkan mendidih selama 10 menit tepat (gunakan stopwatch). Dinginkan cepat cepat (Jangan dikocok), lalu tambahkan 10-15 ml berlebih larutan KI 20% dan 25 ml asam sulfat 25%. Titar dengan larutan tio 0,1N dengan menggunakan indicator kanji. Dikerjakan juga blanko (sampel diganti air suling)
b.      Kadar Gula sesudah inverse (Gula sakarosa = Gula Non pereduksi)
Pipet 50 ml larutan induk ke dalam labu ukur 100 ml. Tambahkan 5 ml HCL 25% lalu jepit labu ukur dengan gegep kayu kemudian masukkan kedalam pengangas air (waterbath). Panaskan pada suhu 68-70 derajat Celcius. Inversi selama 10 menit, lalu angkat dan dinginkan. Tambahkan 2-3 tetes indicator PP, lalu netralkan dengan NaOH 30%. Impitkan dengan air suling hingga tanda garis. Kocok. Pipet 10 ml larutan ini kedalam Erlenmeyer asa berbatu didih. Tambahkan 25 ml larutan Luff (pipet Volume) dan 15 ml air suling (jumlah larutan 50 ml). Tutup dengan pendingin tegak dan panaskan dengan api kecil. Tepat pada pemanasan 3 menit, larutan sudah harus mendidih. Biarkan mendidih selama 10 menit tepat. Dinginkan cepat cepat (jangan dikocok), lalu tambahkan 10-15ml larutan KI 20% dan 25 ml asam sulfat 25%. Titar dengan tio 0,1N dengan indicator kanji. Kerjakan juga blanko. (Sampel diganti air suling).
 
 
Sumber: http://www.id.wikipedia.com/wiki/gula
              Mengille Erni,dkk. 2012 Modul Praktikum Terpadu Smak Makassar, Makassar

Sondag 17 Maart 2013

Uji Kuantitatif Karbohidrat


Uji Kuantitatif

Untuk penetapan kadar karbohidrat dapat dilakukan dengan metode fisika, kimia, enzimatik, dan kromatografi (tidak dibahas).

1. Metode Fisika
Ada dua (2) macam, yaitu :

a. Berdasarkan indeks bias
Cara ini menggunakan alat yang dinamakan refraktometer, yaitu dengan rumus :
X = [(A+B)C - BD)]
4
dimana :
X = % sukrosa atau gula yang diperoleh
A = berat larutan sampel (g)
B = berat larutan pengencer (g)
C = % sukrosa dalam camp A dan B dalam tabel
D = % sukrosa dalam pengencer B

b. Berdasarkan rotasi optis
Cara ini digunakan berdasarkan sifat optis dari gula yang memiliki struktur asimetrs (dapat memutar bidang polarisasi) sehingga dapat diukur menggunakan alat yang dinamakan polarimeter atau polarimeter digital (dapat diketahui hasilnya langsung) yang dinamakan sakarimeter (http://food4healthy.wordpress.com/2008/10/11/analisis-karbohidrat/ 2009).
Menurut hokum Biot; “besarnya rotasi optis tiap individu gula sebanding dengan konsentrasi larutan dan tebal cairan” sehingga dapat dihitung menggunakan rumus :
[a] D20 = 100 A
L x C
dimana :
[a] D20 = rotasi jenis pada suhu 20 oC menggunakan
D = sinar kuning pada panjang gelombang 589 nm dari lampu Na
A = sudut putar yang diamati
C = kadar (dalam g/100 ml)
L = panjang tabung (dm)
sehingga C = 100 A
L x [a] D20 

2. Metode Kimia
Metode ini didasarkan pada sifat mereduksi gula, seperti glukosa, galaktosa, dan fruktosa (kecuali sukrosa karena tidak memiliki gugus aldehid). Fruktosa meskipun tidak memiliki gugus aldehid, namun memiliki gugus alfa hidroksi keton, sehingga tetap dapat bereaksi.
Dalam metode kimia ini ada dua (2) macam cara yaitu :

a. Titrasi
Untuk cara yang pertama ini dapat melihat metode yang telah distandarisasi oleh BSN yaitu pada SNI cara uji makanan dan minuman nomor SNI 01-2892-1992.

b. Spektrofotometri
Adapun untuk cara yang kedua ini menggunakan prinsip reaksi reduksi CuSO4 oleh gugus karbonil pada gula reduksi yang setelah dipanaskan terbentuk endapan kupru oksida (Cu2O) kemudian ditambahkan Na-sitrat dan Na-tatrat serta asam fosfomolibdat sehingga terbentuk suatu komplek senyawa berwarna biru yang dapat diukur dengan spektrofotometer pada panjang gelombang 630 nm.

3. Metode Enzimatik
Untuk metode enzimatis ini, sangat tepat digunakan untuk penentuan kagar suatu gula secara individual, disebabkan kerja enzim yang sangat spesifik. Contoh enzim yang dapat digunakan ialah glukosa oksidase dan heksokinase Keduanya digunakan untuk mengukur kadar glukosa.

a. Glukosa oksidase
D- Glukosa + O2 oleh glukosa oksidase à Asam glukonat dan H2O2
H2O2 + O-disianidin oleh enzim peroksidase à 2H2O + O-disianidin teroksdasi yang berwarna cokelat (dapat diukur pada l 540 nm).

b. Heksokinase
D-Glukosa + ATP oleh heksokinase à Glukosa-6-Phospat +ADP
Glukosa-6-Phospat + NADP+ oleh glukosa-6-phospat dehidrogenase à Glukonat-6-Phospat + NADPH + H+ Adanya NADPH yang dapat berpendar (memiliki gugus kromofor) dapat diukur pada l 334 nm dimana jumlah NADPH yang terbentuk setara dengan jumlah glukosa.